b) DILATAZIONE DEI LIQUIDI

Ci si può chiedere se anche i liquidi si dilatino per effetto del calore, tenendo presente che in caso affermativo non sarà possibile parlare di dilatazione lineare, bensì solo di dilatazione cubica o di volume. Si effettui la seguente esperienza: nel recipiente in figura. avente il collo graduato, si versa un liquido, ad esempio acqua colorata; sia B il livello a cui giunge a temperatura ambiente; si comincia a riscaldare il recipiente; dapprima il liquido scende in A (infatti il vetro del contenitore, essendo per primo a contatto con la fiamma, per primo si riscalda e quindi per primo si dilata, mentre il liquido non ha ancora subìto gli effetti del riscaldamento), poi sale in C; se lo si lascia raffreddare torna in B. Si verifica dunque che

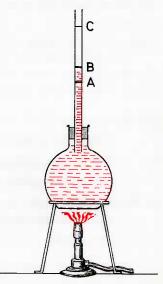


Fig. 150.

un liquido riscaldato aumenta di volume e cioè si dilata (dilatazione cubica); raffreddato diminuisce di volume.

Dall'esperienza descritta risulta inoltre che nei liquidi, i quali assumono sempre la forma del recipiente in cui sono contenuti, si hanno: la dilatazione (AB) del recipiente (che si dilata come se fosse massiccio), la dilatazione apparente (BC) del liquido e la dilatazione reale o assoluta (AC) del liquido. In definitiva:

la dilatazione reale o assoluta di un liquido è uguale alla somma della dilatazione apparente e della dilatazione del recipiente. Poiché l'esperienza mostra che il liquido riscaldato, dopo essere sceso in A, supera B e sale fino in C, è evidente che il liquido si dilata più del recipiente in cui è contenuto; cioè in generale:

i liquidi si dilatano in misura maggiore dei solidi.

Per determinare la dilatazione assoluta di un liquido è indispensabile conoscere preventivamente la dilatazione del recipiente; questa si può determinare con un metodo sperimentale dovuto ai fisici Dulong e Petit, che non viene qui descritto.

Le esperienze che si effettuano con i liquidi sono del tutto simili a quelle già fatte con i solidi; si perviene naturalmente a leggi analoghe a quelle relative alla dilatazione cubica dei solidi e precisamente:

l'aumento di volume subito da un liquido riscaldato

- 1º) è proporzionale al suo volume iniziale;
- 2º) è proporzionale, entro certi limiti, al suo aumento di temperatura;
 - 3º) dipende dalla natura del liquido.

Si definisce anche qui come coefficiente di dilatazione cubica del liquido l'aumento di volume subito da 1 m³ di quel liquido per l'aumento di temperatura di 1 °C; tale coefficiente è caratteristico del liquido in esame.

Coefficienti di dilatazione cubica (α)			
Acqua	0,000.2	Glicerina	0,000.5
Alcool etilico		Mercurio	0,000.18
Benzina	0,001.2	Olio d'oliva	0,000.7
Etere	0,001.6	Petrolio	0,001.0

Dalla Tabella risulta che i coefficienti di dilatazione dei liquidi sono . maggiori di quelli dei solidi; cioè i liquidi, a parità di condizioni, si dilatano più dei solidi, come si era già sperimentalmente osservato in pre-

cedenza. Si può anche qui schematizzare, come per i solidi, il problema; con le consuete notazioni si ottiene la formula:

$$V_t = V_o (1 + \alpha t) \tag{6}$$

dove α è il coefficiente di dilatazione cubica del liquido.

ESERCIZIO – Confronto fra le dilatazioni subite, per lo stesso aumento di temperatura, da 1 cm³ di due sostanze termometriche (mercurio ed alcool) contenute nei bulbi di due termometri identici.

Siano: per il mercurio: $\alpha = 0.00018$; per l'alcool: $\alpha = 0.0011$; riscaldamento: da 0 °C a 50 °C.

Per la (6) si ottiene:

- 1°) Per il mercurio: $V_{50} = 1 \cdot (1 + 0.00018 \cdot 50)$ cm³ = 1.009 cm³ per cui si ha una dilatazione cubica di 0.009 cm³ = 9 mm³.
- 20) Per l'alcool: $V_{50} = 1 \cdot (1 + 0.0011 \cdot 50)$ cm³ = 1.055 cm³ per cui si ha una dilatazione cubica di 0.055 cm³ = 55 mm³.

L'alcool ha subito dunque una dilatazione molto maggiore del mercurio: ecco perché nei termometri ad alcool il cannello non è capillare, ma ha sezione assai maggiore che nel caso dei termometri a mercurio.

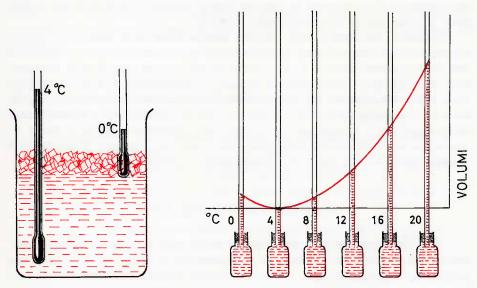


Fig. 151 - Comportamento anomalo dell'acqua.

Anche qui si può ripetere un'osservazione già fatta a proposito della dilatazione dei solidi: un liquido dilatandosi per riscaldamento aumenta di volume; poichè la sua massa ed il suo peso rimangono invariati la sua densità ed il suo peso specifico diminuiranno. Alla legge generale fa eccezione l'acqua; si effettui infatti l'esperienza illustrata in Fig. 151: nel recipiente si trova acqua con del ghiaccio che galleggia su essa; vi sono pure due termometri, uno col bulbo immerso nell'acqua al fondo del recipiente, l'altro invece col bulbo immerso nella miscela acqua-ghiaccio alla superficie dell'acqua. Si osserva che il primo termometro segna 4 °C, mentre il secondo segna 0 °C: dunque l'acqua a 4 °C ha densità maggiore di quella a 0 °C; risulta inoltre, considerando qualsiasi temperatura, che

l'acqua presenta il massimo di densità a 4 °C.

L'esperienza, effettuata a diverse temperature, permette di constatare che quando la temperatura cresce da 0 °C a 4 °C, l'acqua si contrae (al contrario degli altri liquidi); poi, oltre i 4 °C, si dilata normalmente come gli altri.

Questo comportamento anomalo dell'acqua è veramente provvidenziale in natura: i mari nordici, i laghi ed i fiumi delle regioni fredde gelano solo in superficie; verso il fondo si trova l'acqua a 4°C, più pesante, ed i pesci, che morirebbero a 0°C, durante la stagione fredda possono vivere sul fondo in uno stato di quasi letargo alla temperatura di 4°C.

Quando si definisce il peso specifico relativo delle varie sostanze si ricorre al confronto con l'acqua in determinato volume, ma si deve indicare la temperatura dell'acqua e poiché, come si è visto, la sua densità varia al variare della temperatura, si sceglie per l'acqua distillata proprio la temperatura di 4 °C. Le applicazioni della dilatazione dei liquidi non sono numerose ma presentano un caso di estrema importanza già studiato: la realizzazione dei termometrì a liquido (mercurio, alcool ecc.); il vetro con cui è fabbricato il cannello è scelto in modo da presentare un coefficiente di dilatazione trascurabile nei confronti di quello della sostanza termometrica usata; si usa largamente il cosiddetto vetro di Jena.